Search results for "MESH : animals"

showing 10 items of 99 documents

Effects of a high-fat diet on energy metabolism and ROS production in rat liver.

2011

International audience; BACKGROUND & AIMS: A high-fat diet affects liver metabolism, leading to steatosis, a complex disorder related to insulin resistance and mitochondrial alterations. Steatosis is still poorly understood since diverse effects have been reported, depending on the different experimental models used. METHODS: We hereby report the effects of an 8 week high-fat diet on liver energy metabolism in a rat model, investigated in both isolated mitochondria and hepatocytes. RESULTS: Liver mass was unchanged but lipid content and composition were markedly affected. State-3 mitochondrial oxidative phosphorylation was inhibited, contrasting with unaffected cytochrome content. Oxidative…

Mitochondrial ROSMaleTranscription GeneticMESH : Reactive Oxygen SpeciesMitochondria LiverMESH : HepatocytesMitochondrionOxidative PhosphorylationMESH: Hepatocytes0302 clinical medicineMESH: Membrane Potential MitochondrialCitrate synthaseMESH: AnimalsBeta oxidationMESH : Electron Transport2. Zero hungerMembrane Potential Mitochondrial0303 health sciencesMESH : RatsAdenine nucleotide translocatorMESH: Energy MetabolismMESH: Reactive Oxygen SpeciesLipidsBiochemistryLiverMESH: Dietary FatsMitochondrial matrix030220 oncology & carcinogenesisBody CompositionMESH : Oxidative PhosphorylationATP–ADP translocaseMESH: Mitochondria LiverMESH: RatsMESH : Body CompositionMESH : MaleOxidative phosphorylationBiologyMESH : Rats WistarElectron Transport03 medical and health sciencesMESH: Oxidative Phosphorylation[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyRats WistarMESH: Electron Transport[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biology030304 developmental biologyHepatologyMESH: Transcription GeneticMESH : Transcription GeneticMESH : LiverMESH : LipidsMESH: Body CompositionMESH: Rats WistarMESH: LipidsDietary FatsMESH: MaleRatsMESH : Energy MetabolismMESH : Membrane Potential MitochondrialMESH : Mitochondria Liverbiology.proteinHepatocytesMESH : AnimalsEnergy MetabolismReactive Oxygen SpeciesMESH : Dietary FatsMESH: Liver
researchProduct

Immunoaffinity purification and characterization of mitochondrial membrane-bound D-3-hydroxybutyrate dehydrogenase from Jaculus orientalis.

2008

Abstract Background The interconversion of two important energy metabolites, 3-hydroxybutyrate and acetoacetate (the major ketone bodies), is catalyzed by D-3-hydroxybutyrate dehydrogenase (BDH1: EC 1.1.1.30), a NAD+-dependent enzyme. The eukaryotic enzyme is bound to the mitochondrial inner membrane and harbors a unique lecithin-dependent activity. Here, we report an advanced purification method of the mammalian BDH applied to the liver enzyme from jerboa (Jaculus orientalis), a hibernating rodent adapted to extreme diet and environmental conditions. Results Purifying BDH from jerboa liver overcomes its low specific activity in mitochondria for further biochemical characterization of the e…

lcsh:Animal biochemistryMESH : AgedMESH : RodentiaMESH: RodentiaMESH: Base SequenceBiochemistryMESH: Lipid PeroxidationMESH : Information ServicesAntigen-Antibody ReactionsMESH: Health EducationEpitopesMESH: OrganizationsMESH: LibrariesMESH: Antigen-Antibody Reactionslcsh:QD415-436MESH: AnimalsMESH : OrganizationsMESH : Physician's RoleMESH: Bacterial ProteinsImmunosorbent Techniqueschemistry.chemical_classificationMESH: Conserved SequenceMethodology ArticleMESH : Computer Communication NetworksMESH: Chromatography AffinityMESH : Pseudomonas aeruginosaMESH : Chromatography AffinityMESH : Immunosorbent TechniquesMESH: Ethnic GroupsMESH : Ethnic GroupsMESH: EpitopesMESH : Patient SatisfactionMESH : United StatesMESH: MitochondriaMESH : Antigen-Antibody ReactionsMolecular Sequence DataMESH : Hydroxybutyrate DehydrogenaseMESH: Sequence AlignmentRodentiaMESH: Information ServicesMESH : Epitopeslcsh:BiochemistryMESH : Mitochondrial MembranesBacterial ProteinsMESH : Conserved SequenceComplementary DNAMESH : LibrariesMolecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Immunosorbent TechniquesMESH: Molecular Sequence DataMESH: HumansMESH : Consumer ParticipationMESH : HumansMESH: AdultMESH: Patient SatisfactionMESH: Hydroxybutyrate DehydrogenaseMESH: Consumer ParticipationchemistryLipid PeroxidationMESH: FemaleMESH: LiverMESH : Sequence Analysis DNAMESH: Continental Population GroupsMESH: Sequence Analysis DNAMESH : Molecular Sequence DataDehydrogenaseChromatography AffinityMESH: Mitochondrial MembranesMESH: Antibodies BacterialMESH : Bacterial ProteinsMESH : FemaleMESH: Computer Communication NetworksConserved SequenceMESH: AgedbiologyMESH : Lipid PeroxidationMESH : Sequence AlignmentMESH: Physician's RoleMESH : AdultAntibodies BacterialMitochondriaAmino acidLiverBiochemistryMitochondrial MembranesPseudomonas aeruginosaMESH: Pseudomonas aeruginosaMESH : MitochondriaMESH : Mass MediaMESH: Mass MediaMESH : MaleHydroxybutyrate DehydrogenaseAffinity chromatographyMESH : Health Education[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: United StatesAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH : Antibodies Bacteriallcsh:QP501-801Jaculus orientalisMESH : Continental Population GroupsBase SequenceMESH : LiverSequence Analysis DNAbiology.organism_classificationMolecular biologyMESH: MaleEnzymePolyclonal antibodiesbiology.proteinMESH : Base SequenceNAD+ kinaseMESH : AnimalsSequence Alignment
researchProduct

Resveratrol as a Chemopreventive Agent: A Promising Molecule for Fighting Cancer

2006

International audience; Resveratrol (3,4',5 tri-hydroxystilbene) is a phytoalexin produced in hudge amount in grapevine skin in response to infection by Bothrytis cinerea. This production of resveratrol blocks the proliferation of the pathogen, thereby acting as a natural antibiotic. Numerous studies have reported interesting properties of trans-resveratrol as a preventive agent against important pathologies i.e. vascular diseases, cancers, viral infection or neurodegenerative processes. Moreover, several epidemiological studies have revealed that resveratrol is probably one of the main microcomponents of wine responsible for its health benefits such as prevention of vaso-coronary diseases …

Radiation-Sensitizing AgentsMESH : Radiation-Sensitizing AgentsAngiogenesisClinical BiochemistryTumor initiationPharmacologyResveratrolBiologyMESH : Antineoplastic Agents Phytogenicmedicine.disease_causeMESH : Anticarcinogenic AgentsMESH : Stilbeneschemistry.chemical_compoundNeoplasmsMESH : Cell CycleStilbenesDrug DiscoverymedicineAnimalsAnticarcinogenic AgentsHumansCytotoxicity[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyPharmacologychemistry.chemical_classificationPhytoalexinMESH : HumansCell Cyclefood and beveragesCancerCell cyclemedicine.diseaseMESH : NeoplasmsAntineoplastic Agents PhytogenicchemistryResveratrolMolecular MedicineMESH : AnimalsCarcinogenesisCurrent Drug Targets
researchProduct

Abnormalities of mitochondrial functioning can partly explain the metabolic disorders encountered in sarcopenic gastrocnemius.

2007

International audience; Aging triggers several abnormalities in muscle glycolytic fibers including increased proteolysis, reactive oxygen species (ROS) production and apoptosis. Since the mitochondria are the main site of substrate oxidation, ROS production and programmed cell death, we tried to know whether the cellular disorders encountered in sarcopenia are due to abnormal mitochondrial functioning. Gastrocnemius mitochondria were extracted from adult (6 months) and aged (21 months) male Wistar rats. Respiration parameters, opening of the permeability transition pore and ROS production, with either glutamate (amino acid metabolism) or pyruvate (glucose metabolism) as a respiration substr…

Malemuscle atrophyMESH : Cell Aging[SDV]Life Sciences [q-bio]MESH : Reactive Oxygen SpeciesMitochondrion0302 clinical medicineGlycolysisMESH: AnimalsMESH : Muscle SkeletalMESH : Fatty AcidsCellular SenescencePhospholipidsMESH: Superoxide Dismutasereactive oxygen speciesMESH : Free Radicals0303 health sciencesMESH: Muscle SkeletalMESH : RatsFatty Acidsfatty acid profile of mitochondrial lipidsMESH: Reactive Oxygen SpeciesPyruvate dehydrogenase complexMESH: Fatty Acidsmitochondria[SDV] Life Sciences [q-bio]BiochemistryMESH: Cell AgingMESH: CalciumMESH : MitochondriaCell agingPyruvate decarboxylationmedicine.medical_specialtyFree RadicalsMESH: RatsCellular respirationMESH: MitochondriaMESH : MaleCell Respirationchemistry.chemical_elementOxidative phosphorylationBiologyCalciumMESH : Rats WistarMESH : Phospholipids03 medical and health sciencesMESH: Free RadicalsInternal medicinemedicineAnimalsMESH : Superoxide DismutaseRats WistarMuscle SkeletalMESH : Calcium030304 developmental biologyMESH: Phospholipidscalciumpermeability transition poreSuperoxide Dismutaseagingaging;calcium;fatty acid profile of mitochondrial lipids;mitochondria;muscle atrophy;permeability transition pore;reactive oxygen species;Animals;Calcium;Cell Aging;Cell Respiration;Fatty Acids;Free Radicals;Male;Mitochondria;Muscle;Skeletal;Phospholipids;Rats;Wistar;Reactive Oxygen Species;Superoxide DismutaseCell BiologyMESH: Rats WistarMESH: MaleRatsEndocrinologychemistryMESH : Cell RespirationMESH : AnimalsMESH: Cell Respiration030217 neurology & neurosurgery
researchProduct

CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner.

2007

Tumor growth promotes the expansion of CD4+CD25+ regulatory T (T reg) cells that counteract T cell–mediated immune responses. An inverse correlation between natural killer (NK) cell activation and T reg cell expansion in tumor-bearing patients, shown here, prompted us to address the role of T reg cells in controlling innate antitumor immunity. Our experiments indicate that human T reg cells expressed membrane-bound transforming growth factor (TGF)–β, which directly inhibited NK cell effector functions and down-regulated NKG2D receptors on the NK cell surface. Adoptive transfer of wild-type T reg cells but not TGF-β−/− T reg cells into nude mice suppressed NK cell–mediated cytotoxicity, redu…

MESH : CytokinesMESH: Flow CytometryMESH : Immunity NaturalMESH: T-LyLymphocyte ActivationT-Lymphocytes RegulatoryMiceInterleukin 210302 clinical medicineT-Lymphocyte SubsetsTransforming Growth Factor betaNeoplasmsMESH : Receptors ImmunologicMESH : Cell ProliferationImmunology and Allergy[ SDV.IMM ] Life Sciences [q-bio]/ImmunologyMESH: AnimalsMESH: NeoplasmsIL-2 receptorReceptors Immunologic0303 health sciencesMESH: Cytokineshemic and immune systemsFlow CytometryNatural killer T cell3. Good healthCell biologyKiller Cells Naturalmedicine.anatomical_structureNK Cell Lectin-Like Receptor Subfamily KInterleukin 12CytokinesReceptors Natural Killer Cell[SDV.IMM]Life Sciences [q-bio]/ImmunologyFranceMESH : Killer Cells NaturalMESH : Cytotoxicity Tests ImmunologicMESH: Killer Cells NaturalMESH: Cell Line TumorMESH : Flow CytometryImmunologychemical and pharmacologic phenomenaMESH: Cytotoxicity Tests ImmunologicMESH : Mice Inbred C57BLBiologyArticleNatural killer cell03 medical and health sciencesMESH: Mice Inbred C57BLCell Line TumorMESH: Cell ProliferationMESH : MicemedicineAnimalsHumansAntigen-presenting cellMESH: Lymphocyte ActivationMESH : FranceMESH: MiceMESH: Receptors ImmunologicMESH : Lymphocyte ActivationCell Proliferation030304 developmental biologyMESH: Immunity NaturalLymphokine-activated killer cellMESH: HumansMESH : Cell Line TumorMESH : HumansCytotoxicity Tests ImmunologicNKG2DMESH : T-LyMESH : NeoplasmsImmunity InnateMice Inbred C57BLMESH: FranceMESH : Animals030215 immunology
researchProduct

Decreasing dietary linoleic acid promotes long chain omega-3 fatty acid incorporation into rat retina and modifies gene expression

2011

International audience; Age-related macular degeneration (AMD) may be partially prevented by dietary habits privileging the consumption of ω3 long chain polyunsaturated fatty acids (ω3s) while lowering linoleic acid (LA) intake. The present study aimed to document whether following these epidemiological guidelines would enrich the neurosensory retina and RPE with ω3s and modulate gene expression in the neurosensory retina. Rat progenitors and pups were fed with diets containing low or high LA, and low or high ω3s. After scotopic single flash and 8-Hz-Flicker electroretinography, rat pups were euthanized at adulthood. The fatty acid profile of the neurosensory retina, RPE, liver, adipose tis…

CD36 AntigensMaleMESH : RNA MessengerMESH: 5-Lipoxygenase-Activating ProteinsMESH : Receptors LDLMESH: Electroretinography0302 clinical medicineMESH: Fatty Acids Omega-3MESH: AnimalsMESH : Retinal Ganglion Cellschemistry.chemical_classification0303 health sciencesMESH : Gene Expression RegulationMESH : ElectroretinographyMESH: RetinaMESH: Chromatography GasMESH: Dietary Fats Unsaturateddocosahexaenoic acidpolyunsaturated fatty acidSensory Systems3. Good healthnutritionMESH: Photic StimulationAdipose TissueMESH: Adipose Tissuemedicine.medical_specialtyChromatography Gasmacular degenerationLinoleic acidMESH : Arachidonate 12-LipoxygenaseArachidonate 12-LipoxygenaseMESH : Adipose TissueMESH: Arachidonate 12-Lipoxygenasepufa03 medical and health sciencesMESH : Dietary Fats UnsaturatedlipidElectroretinographyRats Long-EvansRNA MessengerMESH: Linoleic AcidMESH: Antigens CD36MESH : RetinaFatty acidMESH: Retinal Ganglion Cellseye diseasesOphthalmologyEndocrinologychemistryMESH: Receptors LDL030221 ophthalmology & optometryATP-Binding Cassette Transportersn 3MESH: FemalePhotic StimulationMESH: LiverRetinal Ganglion CellsretinaMESH : 5-Lipoxygenase-Activating Proteinsgenetic structures[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutritionretinal pigment epitheliumelectroretinogramMESH : Photic StimulationAdipose tissueangiogenesischemistry.chemical_compoundMESH : FemaleMESH : Rats Long-Evans2. Zero hungermedicine.diagnostic_testMESH : RatsMESH: Real-Time Polymerase Chain ReactionMESH: Gene Expression RegulationMESH : Antigens CD36medicine.anatomical_structureLiverALOX12BiochemistryMESH: ATP-Binding Cassette TransportersFemaleATP Binding Cassette Transporter 1Polyunsaturated fatty acidMESH : Fatty Acids Omega-3MESH: RatsbrainMESH : Male5-Lipoxygenase-Activating ProteinsMESH : Real-Time Polymerase Chain Reactionrhesus monkeyBiologyReal-Time Polymerase Chain ReactionMESH : Chromatography GasLinoleic AcidCellular and Molecular NeuroscienceDietary Fats UnsaturatedMESH : Linoleic AcidMESH: Rats Long-EvansInternal medicineFatty Acids Omega-3medicineAnimalsMESH : ATP-Binding Cassette TransportersOmega 3 fatty acidMESH: RNA Messenger030304 developmental biologydeficient dietRetinal pigment epitheliumMESH : LiverMESH: MaleRatsGene Expression RegulationReceptors LDLgene expressionMESH : Animalssense organs[SDV.AEN]Life Sciences [q-bio]/Food and NutritionElectroretinographyExperimental Eye Research
researchProduct

The impact of tumor nitric oxide production on VEGFA expression and tumor growth in a zebrafish rat glioma xenograft model.

2015

International audience; To investigate the effect of nitric oxide on tumor development, we established a rat tumor xenograft model in zebrafish embryos. The injected tumor cells formed masses in which nitric oxide production could be detected by the use of the cell-permeant DAF-FM-DA (diaminofluorophore 4-amino-5-methylamino-2'-7'-difluorofluorescein diacetate) and DAR-4M-AM (diaminorhodamine-4M). This method revealed that nitric oxide production could be co-localized with the tumor xenograft in 46% of the embryos. In 85% of these embryos, tumors were vascularized and blood vessels were observed on day 4 post injection. Furthermore, we demonstrated by qRT-PCR that the transplanted glioma ce…

Vascular Endothelial Growth Factor AMESH: Cyclin D1lcsh:MedicineMESH : Analysis of VarianceMESH: Flow Cytometry[ SDV.IMM.IA ] Life Sciences [q-bio]/Immunology/Adaptive immunologyBenzoates[SDV.IMM.II]Life Sciences [q-bio]/Immunology/Innate immunity[ SDV.CAN ] Life Sciences [q-bio]/CancerMESH: GliomaMESH: Reverse Transcriptase Polymerase Chain ReactionCyclin D1MESH: Animalslcsh:ScienceZebrafishMESH : RatsReverse Transcriptase Polymerase Chain ReactionMESH: Real-Time Polymerase Chain ReactionHistological TechniquesMESH : Reverse Transcriptase Polymerase Chain ReactionImidazolesGliomaMESH: Gene Expression Regulation NeoplasticFlow CytometryMESH : Cyclin D1Gene Expression Regulation NeoplasticMESH : Nitric Oxide[SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunologyMESH : Vascular Endothelial Growth Factor AHeterograftsMESH : Histological TechniquesMESH: ImidazolesResearch ArticleMESH : BenzoatesMESH: RatsMESH : Flow CytometryMESH : Gene Expression Regulation NeoplasticMESH : Real-Time Polymerase Chain ReactionMESH : Zebrafish[SDV.CAN]Life Sciences [q-bio]/CancerMESH: Histological TechniquesMESH : HeterograftsNitric OxideReal-Time Polymerase Chain ReactionMESH : ImidazolesMESH: Analysis of VarianceAnimalsMESH: Zebrafish[ SDV.IMM.II ] Life Sciences [q-bio]/Immunology/Innate immunityAnalysis of VarianceMESH: Vascular Endothelial Growth Factor Alcsh:RMESH: BenzoatesRatsMESH : GliomaMESH: Nitric Oxidelcsh:QMESH: HeterograftsMESH : Animals
researchProduct

Fatty-acid preference changes during development in Drosophila melanogaster.

2011

WOS:000296521400044; International audience; Fatty-acids (FAs) are required in the diet of many animals throughout their life. However, the mechanisms involved in the perception of and preferences for dietary saturated and unsaturated FAs (SFAs and UFAs, respectively) remain poorly explored, especially in insects. Using the model species Drosophila melanogaster, we measured the responses of wild-type larvae and adults to pure SFAs (14, 16, and 18 carbons) and UFAs (C18 with 1, 2, or 3 double-bonds). Individual and group behavioral tests revealed different preferences in larvae and adults. Larvae preferred UFAs whereas SFAs tended to induce both a strong aversion and a persistent aggregation…

[ SDV.BA.ZI ] Life Sciences [q-bio]/Animal biology/Invertebrate Zoology[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutritionlcsh:MedicineInsectMESH : Behavior AnimalBiochemistrychemistry.chemical_compoundBehavioral EcologyMESH : Drosophila melanogasterMESH: Behavior AnimalMESH: AnimalsPalatabilitylcsh:ScienceMESH : Fatty Acidsmedia_commonchemistry.chemical_classificationLarvaMultidisciplinaryMESH : Food PreferencesEcologyAnimal BehaviorBehavior AnimalEcologyMESH : Fatty Acids UnsaturatedDrosophila MelanogasterFatty AcidsAge FactorsAnimal ModelsNeuroethologyMESH: Fatty Acids UnsaturatedtrpLipidsPreferenceMESH: Fatty AcidsMESH: Dietary FatsSex pheromoneLarvadietary fatFatty Acids Unsaturatedtaste receptor cellSensory PerceptionDrosophila melanogasterResearch Articlelinoleic acidmedia_common.quotation_subjectLinoleic acidZoologylarvaeBiologyMESH: Drosophila melanogasterFood PreferencesModel OrganismslipidAnimalsMESH: Food PreferencesBiologyMESH: Age FactorsEvolutionary BiologyChemical EcologyMESH : Larvalcsh:RfungiFatty acidbiology.organism_classificationDietary Fatstaste receptor cell;dietary fat;aggregation pheromone;linoleic acid;larvae;lipid;trp;palatability;metabolism;mutation[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate Zoologychemistrypalatabilitylcsh:QMESH : Age FactorsMESH : AnimalsmutationmetabolismMESH: Larva[SDV.AEN]Life Sciences [q-bio]/Food and NutritionMESH : Dietary FatsNeuroscienceaggregation pheromone
researchProduct

Drosophila female courtship and mating behaviors: sensory signals, genes, neural structures and evolution.

2010

International audience; Interest in Drosophila courtship behavior has a long-standing tradition, starting with the works by Sturtevant in 1915, and by Bastock and Manning in the 50s. The neural and genetic base of Drosophila melanogaster courtship behavior has made big strides in recent years, but the studies on males far outnumber those on females. Recent technical developments have made it possible to begin to unravel the biological substrates underlying the complexity of Drosophila female sexual behavior and its decisive effect on mating success. The present review focus more on the female side and summarizes the sensory signals that the male sends, using multiple channels, and which neu…

MaleMESH: Signal Transduction[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionMESH: NeuronsCourtshipSexual Behavior AnimalMESH : Neural PathwaysMESH : Biological EvolutionNeural PathwaysMESH : Drosophila melanogasterDrosophila ProteinsMESH : FemaleMESH: AnimalsMatingMESH: Sexual Behavior Animalmedia_commonNeuronsbiologyGeneral NeuroscienceBiological EvolutionDrosophila melanogasterFemaleDrosophila melanogasterDrosophila ProteinSignal TransductionMESH: Drosophila ProteinsMESH : Malemedia_common.quotation_subjectMESH: CourtshipSensory systemMESH: Biological EvolutionMESH : NeuronsMESH: Drosophila melanogasterBiological neural networkAnimalsDrosophila (subgenus)MESH : Sexual Behavior AnimalMESH : Signal TransductionMESH : CourtshipCourtship displayMESH: Neural PathwaysfungiCourtshipMESH : Drosophila Proteinsbiology.organism_classificationMESH: MaleMESH : AnimalsNeuroscienceMESH: Female[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition
researchProduct

Identification of Cpgp40/15 Type Ib as the Predominant Allele in Isolates of Cryptosporidium spp. from a Waterborne Outbreak of Gastroenteritis in So…

2006

ABSTRACT Cryptosporidium sp. isolates from a waterborne outbreak of diarrhea in France were analyzed by PCR-restriction fragment length polymorphism analysis and sequencing of the Cpgp40/15 locus. Ninety-one percent of the isolates were Cryptosporidium hominis type Ib. The results of this study and those of studies of other outbreaks suggest that the type Ib allele is the predominant allele associated with waterborne cryptosporidiosis.

MESH : France/epidemiologyEpidemiologyMESH : polymerase chain reactionMESH : molecular sequence dataProtozoan ProteinsCryptosporidiosisPolymerase Chain Reactionlaw.inventionDisease OutbreaksMESH : Cryptosporidium/geneticsMESH : water/parasitologylaw[ SDV.MP ] Life Sciences [q-bio]/Microbiology and ParasitologyMESH : gastroenteritis/parasitologyMESH : Polymorphism restriction fragment lengthwaterborne outbreakPolymerase chain reactionbiologyMESH : DNA Protozoan/analysisCryptosporidiumGastroenteritisDiarrheaMESH : Cryptosporidiosis/epidemiologyFrancemedicine.symptomMESH : Cryptosporidium/classificationCryptosporidium hominisMESH : Protozoan proteins/metabolismPolymorphism Restriction Fragment LengthMicrobiology (medical)MESH : Cryptosporidium/isolation&purificationMolecular Sequence DataCryptosporidiumLocus (genetics)MESH : Disease outbreaksMicrobiologyMESH : Cryptosporidiosis/parasitologymedicineAnimalsAlleleGenotyping[SDV.MP] Life Sciences [q-bio]/Microbiology and ParasitologyAllelesMESH : animalsMESH : sequence analysis DNAOutbreakWaterSequence Analysis DNADNA Protozoanbiology.organism_classificationMESH : protozoan proteins/geneticsVirologygenotypingMESH : Gastroenteritis/epidemiologyMESH : Alleles
researchProduct